DNA melting and energetics of the double helix

Publication date: August 2018Source: Physics of Life Reviews, Volume 25Author(s): Alexander Vologodskii, Maxim D. Frank-KamenetskiiAbstractStudying melting and energetics of the DNA double helix has been one of the major topics of molecular biophysics over the past six decades. The main objective of this article is to overview the current state of the field and to emphasize that there are still serious gaps in our understanding of the issue. We start with a concise description of the commonly accepted theoretical model of the DNA melting. We then concentrate on studies devoted to the comparison with experiment of theoretically predicted melting profiles of DNAs with known sequences. For long DNA molecules, such comparison is significant from the basic-science viewpoint while an accurate theoretical description of melting of short duplexes is necessary for various very important applications in biotechnology. Several sets of DNA melting parameters, proposed within the framework of the nearest neighbor model, are compared and analyzed. The analysis leads to a conclusion that in case of long DNA molecules the consensus set of nearest neighbor parameters describes well the experimental melting profiles. Unexpectedly, for short DNA duplexes the same set of parameters hardly yields any improvement as compared to the simplest model, which completely ignores the effect of heterogeneous stacking. Possible causes of this striking observation are discussed. We then overview the issue of...
Source: Physics of Life Reviews - Category: Physics Source Type: research