Tardigrade Indexing approach on exoplanets

Publication date: Available online 8 August 2018Source: Life Sciences in Space ResearchAuthor(s): Madhu Kashyap Jagadeesh, Milena Roszkowska, Łukasz KaczmarekAbstractFinding life on other worlds is a fascinating area of astrobiology and planetary sciences. Presently, over 3800 exoplanets, representing a very wide range of physical and chemical environments, are known. Scientists are not only looking for traces of life outside Earth, but they are also trying to find out which of Earth's known organisms (ex: tardigrades (water bears)) would be able to survive on other planets. In our study, we have established a metric tool for distinguishing the potential survivability of active and cryptobiotic tardigrades on rocky-water and water-gas planets in our solar system and exoplanets, taking into consideration the geometrical means of six physical parameters such as radius, density, escape velocity, revolution period, surface temperature, and surface pressure of the considered planets. More than 3800 exoplanets are available as the main sample from Planetary Habitable Laboratory – Exoplanet Catalog (PHL-EC), from which we have chosen 57 exoplanets in our study including Earth and Mars, with water composition as reference. The Active Tardigrade Index (ATI) and Cryptobiotic Tardigrade Index (CTI) are two metric indices with minimum value 0 (= tardigrades cannot survive) and maximum 1 (= tardigrades will survive in their respective state). Values between 0 and 1 indicate a percentag...
Source: Life Sciences in Space Research - Category: Biology Source Type: research