Tick-borne pathogen detection: what’s new?

Publication date: Available online 9 January 2018Source: Microbes and InfectionAuthor(s): Alejandro Cabezas-Cruz, Muriel Vayssier-Taussat, Gilbert GreubAbstractTicks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Traditionally, tick-borne pathogen detection has been carried out using PCR-based methods that rely in known sequences for specific primers design. This approach matches with the view of a ‘single-pathogen’ epidemiology. Recent results, however, have stressed the importance of coinfections in pathogen ecology and evolution with impact in pathogen transmission and disease severity. New approaches, including high-throughput technologies, were then used to detect multiple pathogens, but they all need a priori information on the pathogens to search. Thus, those approaches are biased, limited and conceal the complexity of pathogen ecology. Currently, next generation sequencing (NGS) is applied to tick-borne pathogen detection as well as to study the interactions between pathogenic and non-pathogenic microorganisms associated to ticks, the pathobiome. The use of NGS technologies have surfaced two major points: (i) ticks are associated to complex microbial communities and (ii) the relation between pathogens and microbiota is bidirectional. Notably, a new challenge emerges from NGS experiments, data analysis. Discovering associations among a high number of microorganisms is not trivial and therefore most current NGS stu...
Source: Microbes and Infection - Category: Infectious Diseases Source Type: research