The sharp phase of respiratory inhibition during amino acid starvation in Escherichia coli is RelA-dependent and associated with regulation of ATP synthase activity

Publication date: April 2018Source: Research in Microbiology, Volume 169, Issue 3Author(s): Galina V. Smirnova, Aleksey V. Tyulenev, Nadezda G. Muzyka, Oleg N. OktyabrskyAbstractAmino acid starvation causes an RelA-dependent increase in the regulatory nucleotide (p)ppGpp that leads to pleiotropic changes in Escherichia coli metabolism, but the role of (p)ppGpp in regulation of respiration remains unclear. Here we demonstrate that amino acid starvation is accompanied by sharp RelA-dependent inhibition of respiration. The sharp phase of inhibition is absent in relA mutants, and can be prevented by translation inhibitors chloramphenicol and tetracycline, which abolish accumulation of (p)ppGpp. Single knockouts of any components of the respiratory chain do not affect inhibition of respiration. Studies of dO2 changes in various atp mutants indicate that ATP synthase is probably the primary target of (p)ppGpp-mediated respiratory control. Inhibition of respiration induced by amino acid starvation is followed by transient perturbations in the membrane potential (Δψ) and K+ fluxes and leads to transient acceleration of superoxide production and H2O2 accumulation in the medium. High levels of H2O2 and superoxide formation and induced activity of antioxidant systems in the atpC mutant indicate the important role of ATP synthase in controlling the production of reactive oxygen species. The new function of (p)ppGpp, discovered here, expands the understanding of its role in metabolic re...
Source: Research in Microbiology - Category: Microbiology Source Type: research