C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12

In this study, we characterized the core regulators of c-di-GMP turnover in B. amyloliquefaciens PG12. Using bioinformatic analysis, heterologous expression and biochemical characterization of knockout and overexpression derivatives, we identified and characterized two active diguanylate cyclases (which catalyze c-di-GMP biosynthesis), YhcK and YtrP and one active c-di-GMP phosphodiesterase (which degrades c-di-GMP), YuxH. Furthermore, we showed that elevating c-di-GMP levels up to a certain threshold inhibited the swimming motility of B. amyloliquefaciens PG12. Although yhcK, ytrP and yuxH knockout mutants did not display defects in biofilm formation, significant increases in c-di-GMP levels induced by YtrP or YuxH overexpression stimulated biofilm formation in B. amyloliquefaciens PG12. Our results indicate that B. amyloliquefaciens possesses a functional c-di-GMP signaling system that influences the bacterium's motility and ability to form biofilms. Since motility and biofilm formation influence the efficacy of biological control agent, our work provides a basis for engineering a more effective strain of B. amyloliquefaciens PG12.
Source: Research in Microbiology - Category: Microbiology Source Type: research
More News: Microbiology | Study