Microbial inositol polyphosphate metabolic pathway as drug development target

Publication date: January 2018Source: Advances in Biological Regulation, Volume 67Author(s): Adolfo Saiardi, Cristina Azevedo, Yann Desfougères, Paloma Portela-Torres, Miranda S.C. WilsonAbstractInositol polyphosphates are a diverse and multifaceted class of intracellular messengers omnipresent in eukaryotic cells. These water-soluble molecules regulate many aspects of fundamental cell physiology. Removing this metabolic pathway is deleterious: inositol phosphate kinase null mutations can result in lethality or substantial growth phenotypes. Inositol polyphosphate synthesis occurs through the actions of a set of kinases that phosphorylate phospholipase-generated IP3 to higher phosphorylated forms, such as the fully phosphorylated IP6 and the inositol pyrophosphates IP7 and IP8. Unicellular organisms have a reduced array of the kinases for synthesis of higher phosphorylated inositol polyphosphates, while human cells possess two metabolic routes to IP6. The enzymes responsible for inositol polyphosphate synthesis have been identified in all eukaryote genomes, although their amino acid sequence homology is often barely detectable by common search algorithms. Homology between human and microbial inositol phosphate kinases is restricted to a few catalytically important residues. Recent studies of the inositol phosphate metabolic pathways in pathogenic fungi (Cryptococcus neoformans) and protozoa (Trypanosome brucei) have revealed the importance of the highly phosphorylated inosit...
Source: Advances in Biological Regulation - Category: Biology Source Type: research
More News: Biology | Physiology | Study