Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: Materials for applications

Publication date: February 2018Source: Progress in Crystal Growth and Characterization of Materials, Volume 64, Issue 1Author(s): A. Molak, D.K. Mahato, A.Z. SzeremetaAbstractThe electrical, magnetic, and structural features of bismuth manganite (BM), e.g., BiMnO3, and bismuth ferrite (BF), e.g., BiFeO3, are reviewed. Induced multiferroicity and enhanced magnetoelectric coupling are required for various modern device applications. BM and BF were synthesized using standard high-temperature sintering and processes such as sol–gel, hydrothermal, or wet chemical methods combined with annealing. The size and morphology of the nanoscale particles were controlled, although they were usually inhomogeneous. BF exhibits structurally stable antiferromagnetic (AFM) and ferroelectric (FE) phases in wide temperature ranges. Ferromagnetic (FM) order was induced in a thick shell around the AFM core of the nanoscale BF particles, which was attributed to a size effect related to surface strains and disorder. BM exhibited both structurally stable and unstable phases. The BiMnO3, Bi12MnO20, and BiMn2O5 structures are nonferroelectric. The perovskite BiMnO3 form was synthesized under high hydrostatic pressure. FM order occurs in BM at low temperatures. Bi(MnFe)O3 solid solution samples exhibited competition between AFM and FM ordering. Doping can decrease the content of unavoidable secondary phases. Doping in the Bi ion sublattice can stabilize the crystal lattice owing to local strains caused ...
Source: Progress in Crystal Growth and Characterization of Materials - Category: Chemistry Source Type: research