Grain-Boundary Kinetics: A Unified Approach

Publication date: Available online 8 June 2018Source: Progress in Materials ScienceAuthor(s): Jian Han, Spencer L. Thomas, David J. SrolovitzAbstractGrain boundaries (GBs) are central defects for describing polycrystalline materials, and playing major role in a wide-range of physical properties of polycrystals. Control over GB kinetics provides effective means to tailor polycrystal properties through material processing. While many approaches describe different GB kinetic phenomena, this review provides a unifying concept for a wide range of GB kinetic behavior. Our approach rests on a disconnection description of GB kinetics. Disconnections are topological line defects constrained to crystalline interfaces with both step and dislocation character. These characteristics can be completely specified by GB bicrystallography and the macroscopic degrees of freedom of GBs. GB thermal fluctuations, GB migration and the ability of GBs to absorb/emit other defects from/into the delimiting grains can be modeled via the nucleation, propagation and reaction of disconnections in the GB. We review the fundamentals of bicrystallography and its relationship to disconnections and ultimately to the kinetic behavior of GBs. We then relate disconnection dynamics and GB kinetics to microstructural evolution. While this review of the GB kinetics literature is not exhaustive, we review much of the foundational literature and draw comparisons from a wide swath of the extant experimental, simulation,...
Source: Progress in Materials Science - Category: Materials Science Source Type: research