Magnetostrictive polymer composites: Recent advances in materials, structures and properties

Publication date: August 2018Source: Progress in Materials Science, Volume 97Author(s): Rani Elhajjar, Chiu-Tai Law, Alessandro PegorettiAbstractMagnetostrictive polymer composites (MPCs) are a class of materials having the ability to simultaneously change dimensions, elastic and/or electromagnetic properties under the presence of a magnetic field. Their advantages over bulk magnetostrictive metals are high resistivity, extended frequency response, low weight, ease of formability and improved mechanical properties. In this review, advances in MPCs and their applications since the year 2000 are presented. A wide range of reinforcements and morphologies used to generate magnetostrictive response in polymers are considered, including carbonyl iron, nickel and rare-earth metal based reinforcements. A critical analysis of the various polymeric systems from stiff thermosets to soft elastomers is provided, focusing on how the material selection influences the magnetorheological and magnetoelectric properties. Multiscale approaches, such as continuum micromechanics based theories and multi-physics finite element approaches, for modeling the coupled magneto-elastic responses are also reviewed. Recognizing their unique properties, recent applications of MPCs in electric current and stress sensing, vibration damping, actuation, health monitoring and biomedical fields are also presented. The survey allows us to shed light on new directions for fundamental research, interface studies and ...
Source: Progress in Materials Science - Category: Materials Science Source Type: research