Semaphorin 3A as an inhibitive factor for migration of olfactory ensheathing cells through cofilin activation is involved in formation of olfactory nerve layer

Publication date: Available online 27 June 2018Source: Molecular and Cellular NeuroscienceAuthor(s): Ying Wang, Xiaomei Bao, Shiyang Wu, Xiya Shen, Fan Zhang, Zhaoting Lv, Qian Wu, Changnan Xie, Huitao Liu, Jian Lin, Honglin Teng, Zhihui HuangAbstractOlfactory ensheathing cells (OECs) migrate from olfactory epithelium towards olfactory bulb (OB), contributing to formation of the presumptive olfactory nerve layer during development. However, it remains unclear that molecular mechanism of regulation of OEC migration in OB. In the present study, we found that OECs highly expressed the receptors of semaphorin 3A (Sema3A) in vitro and in vivo, whereas Sema3A displayed a gradient expression pattern with higher in inner layer of OB and lower in outer layer of OB. Furthermore, the collapse assays, Boyden chamber migration assays and single-cell migration assays showed that Sema3A induced the collapse of leading front of OECs and inhibited OEC migration. Thirdly, the leading front of OECs exhibited adaptation in a protein synthesis-independent manner, and endocytosis-dependent manner during Sema3A-induced OEC migration. Finally, Sema3A-induced collapse of leading front was required the decrease of focal adhesion and a retrograde F-actin flow in a cofilin activation-dependent manner. Taken together, these results demonstrate that Sema3A as an inhibitive migratory factor for OEC migration through cofilin activation is involved in the formation of olfactory nerve layer.
Source: Molecular and Cellular Neuroscience - Category: Neuroscience Source Type: research