Identification and characterization of two novel alternatively spliced E2F1 transcripts in the rat CNS

Publication date: Available online 22 June 2018 Source:Molecular and Cellular Neuroscience Author(s): Dan P. Jackson, Jenhao H. Ting, Paul D. Pozniak, Claire Meurice, Stephanie S. Schleidt, Anh Dao, Amy H. Lee, Eva Klinman, Kelly L. Jordan-Sciutto E2F1 is a transcription factor classically known to regulate G0/G1 to S phase progression in the cell cycle. In addition, E2F1 also regulates a wide range of apoptotic genes and thus has been well studied in the context of neuronal death and neurodegenerative diseases. However, its function and regulation in the mature central nervous system are not well understood. Alternative splicing is a well-conserved post-transcriptional mechanism common in cells of the CNS and is necessary to generate diverse functional modifications to RNA or protein products from genes. Heretofore, physiologically significant alternatively spliced E2F1 transcripts have not been reported. In the present study, we report the identification of two novel alternatively spliced E2F1 transcripts: E2F1b, an E2F1 transcript retaining intron 5, and E2F1c, an E2F1 transcript excluding exon 6. These alternatively spliced transcripts are observed in the brain and neural cell types including neurons, astrocytes, and undifferentiated oligodendrocytes. The expression of these E2F1 transcripts is distinct during maturation of primary hippocampal neuroglial cells. Pharmacologically-induced global translation inhibition with cycloheximide, anisomycin or thapsigargi...
Source: Molecular and Cellular Neuroscience - Category: Neuroscience Source Type: research