Stimuli-Triggered Strand Displacement-Based Multifunctional Gene Detection Platform Controlled By A Multi-Input DNA Logic Gate

Publication date: May 2018 Source:Chinese Journal of Analytical Chemistry, Volume 46, Issue 5 Author(s): Shuang WU, Pai PENG, Hui-Hui WANG, Tao LI Highly sensitive detection of various cancer related genes is of great significance in a number of biomedical applications. Here we describe a logic-controlled multifunctional platform that is capable of detecting two kinds of gene sequences with a 2-aminopurine (2-AP) as a quencher-free fluorescent probe, the fluorescence of which dramatically increases when it loops out the DNA helices. This detection platform is assembled from the split ATP aptamer, G-quadruplex, and the antisense strands of the P53 and K-ras genes, together with their complementary components. It is selectively activated by ATP and K+ via the target-induced DNA strand displacement, enabling the exposure of two long toehold regions that allow the P53 and K-ras genes to trigger the next DNA strand displacements. A hairpin DNA containing a looped-out 2-AP in the stem is finally released, accompanying with a significant increase of fluorescence intensity. The whole process behaves as a four-input AND logic gate. Such a logic-controlled gene detection platform is able to convert the external stimulation of ions and biomolecules into a detectable fluorescence output and functions well in gene detection. Graphical abstract
Source: Chinese Journal of Analytical Chemistry - Category: Chemistry Source Type: research