Assessment of Mechanical Characteristics of Ankle-Foot Orthoses

Recent designs of ankle-foot orthoses (AFOs) have been influenced by the increasing demand for higher function from active individuals. The biomechanical function of the individual and device is dependent upon the underlying mechanical characteristics of the AFO. Prior mechanical testing of AFOs has primarily focused on rotational stiffness to provide insight into expected functional outcomes; mechanical characteristics pertaining to energy storage and release have not yet been investigated. A pseudostatic bench testing method is introduced to characterize compressive stiffness, device deflection, and motion of solid-ankle, anterior floor reaction, posterior leaf spring, and the intrepid dynamic exoskeletal orthosis (IDEO) AFOs. Each of these four AFOs, donned over a surrogate limb, were compressively loaded at different joint angles to simulate the foot-shank orientation during various subphases of stance. In addition to force –displacement measurements, deflection of each AFO strut and rotation of proximal and supramalleolar segments were analyzed. Although similar compressive stiffness values were observed for AFOs designed to reduce ankle motion, the corresponding strut deflection profile differed based on the respec tive fabrication material. For example, strut deflection of carbon-fiber AFOs resembled column buckling. Expanded clinical test protocols to include quantification of AFO deflection and rotation during subject use may provide additional insight into design ...
Source: Journal of Biomechanical Engineering - Category: Biomedical Engineering Source Type: research