Perturbation velocity affects linearly estimated neuromechanical wrist joint properties

The dynamic behavior of the wrist joint is governed by nonlinear properties, yet applied mathematical models, used to describe the measured input-output (perturbation-response) relationship, are commonly linear. Consequently, the linearly estimated model parameters will depend on properties of the applied perturbation properties (such perturbation amplitude and velocity). We aimed to systematically address the effects of perturbation velocity on linearly estimated neuromechanical parameters.Using a single axis manipulator ramp and hold perturbations were applied to the wrist joint.
Source: Journal of Biomechanics - Category: Biomedical Science Authors: Tags: Short communication Source Type: research