Cell cycle and apoptosis regulator 2 at the interface between DNA damage response and cell physiology

Publication date: Available online 19 March 2018 Source:Mutation Research/Reviews in Mutation Research Author(s): Martina Magni, Giacomo Buscemi, Laura Zannini Cell cycle and apoptosis regulator 2 (CCAR2 or DBC1) is a human protein recently emerged as a novel and important player of the DNA damage response (DDR). Indeed, upon genotoxic stress, CCAR2, phosphorylated by the apical DDR kinases ATM and ATR, increases its binding to the NAD+-dependent histone deacetylase SIRT1 and inhibits its activity. This event promotes the acetylation and activation of p53, a SIRT1 target, and the subsequent induction of p53 dependent apoptosis. In addition, CCAR2 influences DNA repair pathway choice and promotes the chromatin relaxation necessary for the repair of heterochromatic DNA lesions. However, besides DDR, CCAR2 is involved in several other cellular functions. Indeed, through the interaction with transcription factors, nuclear receptors, epigenetic modifiers and RNA polymerase II, CCAR2 regulates transcription and transcript elongation. Moreover, promoting Rev-erbĪ± protein stability and repressing BMAL1 and CLOCK expression, it was reported to modulate the circadian rhythm. Through SIRT1 inhibition, CCAR2 is also involved in metabolism control and, suppressing RelB and p65 activities in the NFkB pathway, it restricts B cell proliferation and immunoglobulin production. Notably, CCAR2 expression is deregulated in several tumors and, compared to the non-neoplastic counterpart, it m...
Source: Mutation Research Reviews in Mutation Research - Category: Genetics & Stem Cells Source Type: research