Neonatal hyperglycemia alters the neurochemical profile, dendritic arborization and gene expression in the developing rat hippocampus

Hyperglycemia (blood glucose concentration >150 mg/dL) is common in extremely low gestational age newborns (ELGANs; birth at <28 week gestation). Hyperglycemia increases the risk of brain injury in the neonatal period. The long‐term effects are not well understood. In adult rats, hyperglycemia alters hippocampal energy metabolism. The effects of hyperglycemia on the developing hippocampus were studied in rat pups. In Experiment 1, recurrent hyperglycemia of graded severity (moderate hyperglycemia (moderate‐HG), mean blood glucose 214.6 ± 11.6 mg/dL; severe hyperglycemia (severe‐HG), 338.9 ± 21.7 mg/dL; control, 137.7 ± 2.6 mg/dL) was induced from postnatal day (P) 3 to P12. On P30, the hippocampal neurochemical profile was determined using in vivo 1H MR spectroscopy. Dendritic arborization in the hippocampal CA1 region was determined using microtubule‐associated protein (MAP)‐2 immunohistochemistry. In Experiment 2, continuous hyperglycemia (mean blood glucose 275.3 ± 25.8 mg/dL; control, 142.3 ± 2.6 mg/dL) was induced from P2 to P6 by injecting streptozotocin (STZ) on P2. The mRNA expression of glycogen synthase 1 (Gys1), lactate dehydrogenase (Ldh), glucose transporters 1 (Glut1) and 3 (Glut3) and monocarboxylate transporters 1 (Mct1), 2 (Mct2) and 4 (Mct4) in the hippocampus was determined on P6. In Experiment 1, MRS demonstrated lower lactate concentration and glutamate/glutamine (Glu/Gln) ratio in the severe‐HG group, compared with the contr...
Source: NMR in Biomedicine - Category: Radiology Authors: Tags: RESEARCH ARTICLE Source Type: research