Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation

Abstract The bioremediation of polycyclic aromatic hydrocarbon (PAH)‐contaminated sites is not running smoothly, because of the lower activity of PAH‐degrading bacteria in actual bioremediation applications. The phenomenon of “viable but nonculturable” (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH‐degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)‐contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB‐degrading bacteria, scanty information is available on the VBNC bacteria in PAH‐contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH‐biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH‐contaminated sites. This mini‐review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation. Significance and Impact of the StudyAs the vast majority microbial resource, viable ...
Source: Letters in Applied Microbiology - Category: Microbiology Authors: Tags: Review Article Source Type: research