Reflectance and biochemical responses of maize plants to drought and re ‐watering cycles

Abstract The ability to recover from drought stress after re‐watering is an important feature that will enable plants to cope with the predicted increase in episodic drought. The effects of pre‐drought and re‐watering conditions on leaf spectral properties and their relationships with the biochemical processes that underlie the recovery from pre‐drought conditions should be better understood. The reflectance spectra, 10 spectral reflectance indices (SRIs) and biochemical characteristics of maize (Zea mays) leaves were monitored 7, 14, 21 and 28 days after the initiation of soil drought stress during two successive cycles of drought and re‐watering periods. The leaf reflectance of the two inbred maize lines increased under the drought stress, especially in the visible spectral range. In addition, an obvious recovery of the leaf reflectance was only observed in the first re‐watering period, and its value remained higher than that of the control plants during the second recovery period. A recovery lag in the pigment contents was also observed during the second cycle. The recovery variations in the pattern and magnitude of the SRIs and the total contents of C, N and P that were measured in response to the re‐watering during both cycles were diverse and complex; both full and partial recoveries were observed. The SRIs representing different physiological attributes of plant growth, including the water index, red edge position, photochemical reflectance index and ne...
Source: Annals of Applied Biology - Category: Biology Authors: Tags: RESEARCH ARTICLE Source Type: research
More News: Biology