Respirable powder formulation of a shortened vasoactive intestinal peptide analog for treatment of airway inflammatory diseases

The aim of present study was to develop a respirable powder (RP) of a shortened vasoactive intestinal peptide (VIP) analog for inhalation. VIP and C‐terminally truncated VIP analogs were synthesized with a solid‐phase method. A structure‐activity relationship (SAR) study was carried out in terms with binding and relaxant activities of the peptides. Prepared RP formulation of a shortened VIP analog was physicochemically characterized by morphological, in vitro aerodynamic, and pharmacological assessments. The SAR study demonstrated that the N‐terminal 23 amino acid residues were required for biological activity of VIP. Upon chemical modification of VIP(1–23), [R15, 20, 21, L17]‐VIP(1–23) was newly developed, which had higher binding activity in rat lung and smooth muscle relaxant effect in mouse stomach than VIP(1–23). The [R15, 20, 21, L17]‐VIP(1–23)‐based RP, [R15, 20, 21, L17]‐VIP(1–23)/RP, exhibited fine in vitro inhalation performance. Airway inflammation evoked by sensitization of antigen in rats was attenuated by pre‐treatment with the [R15, 20, 21, L17]‐VIP(1–23)/RP at a dose of 50 μg‐[R15, 20, 21, L17]‐VIP(1–23)/rat as evidenced by a 70% reduction of recruited inflammatory cells in bronchoalveolar lavage fluid. On the basis of these results, [R15, 20, 21, L17]‐VIP(1–23)/RP might be a promising agent for treatment of airway inflammatory diseases. A shortened vasoactive intestinal peptide [VIP (1–23)] was newly synthesized ...
Source: Journal of Peptide Science - Category: Biochemistry Authors: Tags: RESEARCH ARTICLE Source Type: research