Hallucinations, neuroplasticity, and prediction errors in schizophrenia

Auditory hallucinations, a hallmark symptom of psychosis, are experienced by most people with a diagnosis of schizophrenia at some point in their illness. Auditory hallucinations can be understood as a failure in predictive coding, whereby abnormalities in sensory/perceptual processing combine with biased cognitive processes to result in a dampening of normal prediction error signaling. In this paper, we used a roving mismatch negativity (MMN) paradigm to optimize evaluation of prediction error signaling and short‐term neuroplasticity in 30 people with schizophrenia (n = 16 with and n = 14 without recent auditory hallucinations) and 20 healthy comparison participants. The recent hallucinations group exhibited an abnormal roving MMN profile [F(2,27) = 3.98, p = 0.03], significantly reduced prediction error signaling [t(28) = –2.25, p = 0.03], and a trend for diminished short‐term neuroplasticity [t(28) = 1.80, p = 0.08]. There were no statistically significant differences between the healthy comparison group and the combined schizophrenia group on any of the roving MMN indices. These findings are consistent with a predictive coding account of hallucinations in schizophrenia, which posits reduced prediction error signaling in those who are prone to hallucinations. These results also suggest that plasticity‐mediated formation and online updating of predictive coding models may also be disrupted in individuals with recent hallucinations.
Source: Scandinavian Journal of Psychology - Category: Psychiatry & Psychology Authors: Tags: Original Article Source Type: research