Functional Blocking of Ninjurin1 as a Strategy for Protecting Endothelial Cells in Diabetes Mellitus

Ongoing efforts to remove pathological inflammatory stimuli are crucial for the protection of endothelial cells in diabetes. Nerve injury-induced protein 1 (Ninj1) is an adhesion molecule that not only contributes to inflammation but also regulates the apoptosis of endothelial cells. In the present study, Ninj1 was found highly expressed in endothelial cells in type 2 diabetic mice and increased in high-glucose (HG) cultured HUVECs. Furthermore, we found that Ninj1 levels are up-regulated in endothelial cells in clinical specimens of diabetic patients when compared with non-diabetic tissues, indicating a biological correlation between Ninj1 and endothelial pathophysiology in diabetic condition. Functional blocking of Ninj1 promoted endothelial tube formation and eNOS phosphorylation in the HG condition. Additionally, blocking Ninj1 inhibited the activation of caspase-3 and increased the Bcl-2/Bax ratio, thus inhibiting HUVECs apoptosis induced by HG. HG-induced ROS overproduction, p38 MAPK and NF-B activation, and the overexpression of VCAM-1, ICAM-1, MCP-1 and IL-6 genes was ameliorated after Ninj1 was blocked. Using the signaling pathway inhibitor LY294002, we found that Bcl-2 expression and eNOS phosphorylation after Ninj1 blockade were regulated via PI3K/Akt signaling pathway. The in vivo endothelial contents, α-SMA+PECAM- 1+ vascular numbers and blood perfusion in the hindlimb were markedly up-regulated after Ninj1 was blocked. According to our findings, functional...
Source: Clinical Science - Category: Biomedical Science Authors: Tags: PublishAheadOfPrint Source Type: research