Tissue specific expression and in-silico characterization of a putative Cysteine synthase gene from Lathyrus sativus L.

Publication date: Available online 13 December 2017 Source:Gene Expression Patterns Author(s): Saikat Chakraborty, Joy Mitra, Milan Kumar Samanta, Narattam Sikdar, Jagannath Bhattacharyya, Anulina Manna, Subrata Pradhan, Anirban Chakraborty, Bikas Ranjan Pati Grass pea (Lathyrus sativus L.) is a worldwide popular pulse crop especially for its protein rich seeds with least production cost. However, the use of the crop became controversial due to the presence of non-protein amino acid, β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) in its seed and leaf, which is known as the principle neurotoxin to cause neurolathyrism (a motor neurodegenerative disease of humans and animals) during prolonged consumption as regular diet. Till date, the knowledge on β-ODAP biosynthesis in Lathyrus sp. is limited only to a small part of the complex bio-chemical steps involved including a few known sulfur-containing enzymes (viz. cysteine synthase, ODAP synthase etc.). In Lathyrus sativus, biosynthesis of β-ODAP varies differentially in a tissue-specific manner as well as in response to several environmental stresses viz. zinc deficiency, iron over-exposure, moisture stress etc. In the present study, a novel cysteine synthase gene (LsCSase) from Lathyrus sativus L was identified and characterized through bioinformatics approaches. The bioinformatic analysis revealed that LsCSase showed maximum similarity with the O-acetyl serine (thiol) lyase of Medicago truncatula with respect ...
Source: Gene Expression Patterns - Category: Genetics & Stem Cells Source Type: research