Modeling of a C ‐end rule peptide adsorbed onto gold nanoparticles

The RPAR peptide, a prototype C‐end Rule (CendR) sequence that binds to neuropilin‐1 (NRP‐1), has potential therapeutic uses as internalization trigger in anticancer nanodevices. Recently, the functionalization of gold nanoparticles with CendR peptides has been proved to be a successful strategy to target the NRP‐1 receptor in prostate cancer cells. In this work, we investigate the influence of two gold surface facets, (100) and (111), on the conformational preferences of RPAR using molecular dynamics simulations. Both clustering and conformational analyses revealed that the peptide backbone becomes very rigid upon adsorption onto gold, which is a very fast and favored process, the only flexibility being attributed to the side chains of the two Arg residues. Thus, the different components of RPAR tend to adopt an elongated shape, which is characterized by the pseudo‐extended conformation of both the backbone and the Arg side chains. This conformation is very different from the already known bioactive conformation, indicating that RPAR is drastically affected by the substrate. Interestingly, the preferred conformations of the peptide adsorbed onto gold facets are not stabilized by salt bridges and/or specific intramolecular hydrogen bonds, which represent an important difference with respect to the conformations found in other environments (e.g. the peptide in solution and interacting with NRP‐1 receptor). However, the conformational changes induced by the substrat...
Source: Journal of Peptide Science - Category: Biochemistry Authors: Tags: RESEARCH ARTICLE Source Type: research