Development and Feasibility of a Robotic Laparoscopic Clipping Tool for Wound Closure and Anastomosis

This paper reports the design, development, and initial evaluation of a robotic laparoscopic clipping tool for single manipulator wound closure and anastomosis (tubular reconnection). The tool deploys biodegradable clips and clasps with the goal of (i) integrating grasping and suturing into a single device for single hand or manipulator use, (ii) applying the equivalent of interrupted sutures without the need of managing suture thread, and (iii) allowing for full six degrees-of-freedom (DOFs) laparoscopic control when mounted on a robot arm. The specifications, workflow, and detailed design of the robotic laparoscopic tool and injection molded bio-absorbable T shaped clip and locking clasp are reported. The clipping tool integrates forceps to grab and stabilize tissue and a clip and clasp applier to approximate and fixate the tissue. A curved needle is advanced on a circular needle path and picks up and drags clips through tissue. The clip is then tightened through the tissue and a clasp is clamped around the clip, before the clip is released from the needle. Results of several bench test runs of the tool show: (a) repeatable circular needle drive, (b) successful pick-up and deployment of clips, (c) successful shear of the clip to release the clip from the needle, and (d) closure of clasp on clip with an average of 2.0 N holding force. These data indicate that the robotic laparoscopic clipping tool could be used for laparoscopic wound closure and anastomosis.
Source: Journal of Medical Devices, Transactions of the ASME - Category: Medical Devices Source Type: research