Expression of isotocin is male ‐specifically up‐regulated by gonadal androgen in the medaka brain

Oxytocin, a mammalian neuropeptide primarily synthesised in the supraoptic and paraventricular nuclei of the hypothalamus, mediates a variety of physiological and behavioural processes, ranging from parturition and lactation to affiliation and prosociality. Multiple studies in rodents have shown that the expression of the oxytocin gene (Oxt) is stimulated by oestrogen, whereas androgen has no apparent effect. However, this finding is not consistent across all studies, and no study has examined sex steroid regulation of Oxt or its orthologues in other animals. In the present study, we show that, in the teleost fish, medaka (Oryzias latipes), the expression of the isotocin gene (it), the teleost orthologue of Oxt, in the parvocellular preoptic nuclei (homologous to the mammalian supraoptic nucleus) is male‐specifically up‐regulated by gonadal androgen, whereas it expression in the magnocellular/gigantocellular preoptic nuclei (homologous to the mammalian paraventricular nucleus) is independent of sex steroids in both sexes. None of the it‐expressing neurones appear to co‐express androgen receptors, suggesting that the effect of androgen on it expression is indirect. We found that the expression of a kisspeptin gene, kiss2, in the male brain is dependent on gonadal androgen, raising the possibility that the androgen‐dependent expression of it may be mediated by kiss2 neurones. Our data also show that the isotocin peptide synthesised in response to androgen is axonally ...
Source: Journal of Neuroendocrinology - Category: Endocrinology Authors: Tags: ORIGINAL ARTICLE Source Type: research