Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers

The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnTR94H)-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnTWT) and the guinea pig analog of the human R94H mutation (TnTR95H) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnTR95H increased pCa50 (–log of free Ca2+ concentration) to a greater extent at short SL; TnTR95H increased pCa50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa50 associated with an increase in SL from 1.9 to 2.3 µm (pCa50) was attenuated nearly twofold in TnTR95H fibers; pCa50 was 0.09 pCa units for TnTWT fibers but only 0.05 pCa units for TnTR95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnTR95H. Collectively, our observations on the ...
Source: AJP: Heart and Circulatory Physiology - Category: Cardiology Authors: Tags: RESEARCH ARTICLE Source Type: research