A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes [Research]

We examined the relationship between ribosomal RNA (rRNA) production and IGF-1–mediated myotube hypertrophy in vitro. Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (–64 ± 5% vs. IGF-1; P < 0.001) and total RNA content (–16 ± 2% vs. IGF-1; P < 0.001) in IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P < 0.05 vs. control) and total protein (+20 ± 2%; P < 0.001 vs. control) were not prevented by CX treatment. Suppression of rRNA synthesis during IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P < 0.001) and p70 S6K1 (269 ± 41% vs. CX; P < 0.001) phosphorylation. Despite robust inhibition of the dynamic ribosomal biogenesis response to IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro.—Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1–medi...
Source: FASEB Journal - Category: Biology Authors: Tags: Research Source Type: research
More News: Biology