Thalidomide, Bound to Its Target

There's a new report in the literature on the mechanism of thalidomide, so I thought I'd spend some time talking about the compound. Just mentioning the name to anyone familiar with its history is enough to bring on a shiver. The compound, administered as a sedative/morning sickness remedy to pregnant women in the 1950s and early 1960s, famously brought on a wave of severe birth defects. There's a lot of confusion about this event in the popular literature, though - some people don't even realize that the drug was never approved in the US, although this was a famous save by the (then much smaller) FDA and especially by Frances Oldham Kelsey. And even those who know a good amount about the case can be confused by the toxicology, because it's confusing: no phenotype in rats, but big reproductive tox trouble in mice and rabbits (and humans, of course). And as I mentioned here, the compound is often used as an example of the far different effects of different enantiomers. But practically speaking, that's not the case: thalidomide has a very easily racemized chiral center, which gets scrambled in vivo. It doesn't matter if you take the racemate or a pure enantiomer; you're going to get both of the isomers once it's in circulation. The compound's horrific effects led to a great deal of research on its mechanism. Along the way, thalidomide itself was found to be useful in the treatment of leprosy, and in recent years it's been approved for use in multiple myeloma and other cancers....
Source: In the Pipeline - Category: Chemists Tags: Biological News Source Type: blogs