Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths

We report the synthesis of novel multicolor photoluminescent carbon quantum dots (CQDs) from multi-wall carbon nanotubes, and their covalent functionalization with amines by peptide bonds. The resulting CQDs consisted of quasi-spherical graphite nanocrystals around 10 nm diameter, which were capped by amines with different hydrocarbon chains such as propylamine, octylamine, dodecylamine and octadecylamine. The introduction of nitrogen atoms and the hydrocarbon chains in the surface of the CQDs dramatically affected their photoluminescence profiles, quantum yields and solubility. The photoluminescence emission wavelength of these novel organic-soluble CQDs depended on the excitation wavelength and their quantum yields varied with the chain length of the hydrocarbon chain attached to the surface of the carbon dots.
Source: New Carbon Materials - Category: Chemistry Source Type: research