Antitumor Effect of the Atypical Retinoid ST1926 in Acute Myeloid Leukemia and Nanoparticle Formulation Prolongs Lifespan and Reduces Tumor Burden of Xenograft Mice

Acute myeloid leukemia (AML) is one of the most frequent types of blood malignancies. It is a complex disorder of undifferentiated hematopoietic progenitor cells. The majority of patients generally respond to intensive therapy. Nevertheless, relapse is the major cause of death in AML, warranting the need for novel treatment strategies. Retinoids have demonstrated potent differentiation and growth regulatory effects in normal, transformed, and hematopoietic progenitor cells. All-trans retinoic acid (ATRA) is the paradigm of treatment in acute promyelocytic leukemia, an AML subtype. The majority of AML subtypes are, however, resistant to ATRA. Multiple synthetic retinoids such as ST1926 recently emerged as potent anticancer agents to overcome such resistance. Despite its lack of toxicity, ST1926 clinical development was restricted due to its limited bioavailability and rapid excretion. Here, we investigate the preclinical efficacy of ST1926 and polymer-stabilized ST1926 nanoparticles (ST1926-NP) in AML models. We show that sub-μmol/L concentrations of ST1926 potently and selectively inhibited the growth of ATRA-resistant AML cell lines and primary blasts. ST1926 induced-growth arrest was due to early DNA damage and massive apoptosis in AML cells. To enhance the drug's bioavailability, ST1926-NP were developed using Flash NanoPrecipitation, and displayed comparable anti-growth activities to the naked drug in AML cells. In a murine AML xenograft model, ST1926 and ST1926-NP sig...
Source: Molecular Cancer Therapeutics - Category: Cancer & Oncology Authors: Tags: Small Molecule Therapeutics Source Type: research