Nuclear FAK and Runx1 Cooperate to Regulate IGFBP3, Cell-Cycle Progression, and Tumor Growth

Nuclear focal adhesion kinase (FAK) is a potentially important regulator of gene expression in cancer, impacting both cellular function and the composition of the surrounding tumor microenvironment. Here, we report in a murine model of skin squamous cell carcinoma (SCC) that nuclear FAK regulates Runx1-dependent transcription of insulin-like growth factor binding protein 3 (IGFBP3), and that this regulates SCC cell-cycle progression and tumor growth in vivo. Furthermore, we identified a novel molecular complex between FAK and Runx1 in the nucleus of SCC cells and showed that FAK interacted with a number of Runx1-regulatory proteins, including Sin3a and other epigenetic modifiers known to alter Runx1 transcriptional function through posttranslational modification. These findings provide important new insights into the role of FAK as a scaffolding protein in molecular complexes that regulate gene transcription. Cancer Res; 77(19); 5301–12. ©2017 AACR.
Source: Cancer Research - Category: Cancer & Oncology Authors: Tags: Molecular and Cellular Pathobiology Source Type: research