Face percept formation in human ventral temporal cortex

Loci in ventral temporal cortex are selectively active during viewing of faces and other objects, but it remains unclear whether these areas represent accumulation of simple visual information or processing of intact percept. We measured broadband electrocorticographic changes from implanted electrodes on the ventral temporal brain surface while showing patients noise-degraded images of faces and houses. In a subset of posterior fusiform gyrus face-selective regions, cortical activity decreased parametrically with noise increase, until the perceptual threshold was surpassed. At noise levels higher than the perceptual threshold, and for house stimuli, activity remained at baseline. We propose that this convergence of proportional and thresholded response may identify active areas where face percepts are extracted from simple visual features. These loci exist within a topological structure of face percept formation in the human ventral visual stream, preceded by category-nonselective activity in pericalcarine early visual areas and in concert with all-or-nothing activity in postperceptual subregions of the ventral temporal lobe. This topological organization suggests a physiological basis for the anatomy of face perception, explaining different perceptual deficits following temporal lobe injury. NEW & NOTEWORTHY Philosophers have puzzled for millennia about how humans build abstract conceptual objects (house/face/tool) from the simple features of the world they see around t...
Source: Journal of Neurophysiology - Category: Neurology Authors: Tags: Research Articles Source Type: research