A reduced somatosensory gating response in individuals with multiple sclerosis is related to walking impairment

In this study, we examine the neural basis of somatosensory gating in patients with MS and healthy controls and assess the relationship between somatosensory gating and walking performance. We used magnetoencephalography to record neural responses to paired-pulse electrical stimulation applied to the right posterior tibial nerve. All participants also walked across a digital mat, which recorded their spatiotemporal gait kinematics. Our results showed the amplitude of the response to the second stimulation was sharply reduced only in controls, resulting in a significantly reduced somatosensory gating in the patients with MS. No group differences were observed in the amplitude of the response to the first stimulation nor the latency of the neural response to either the first or second stimulation. Interestingly, the altered somatosensory gating responses were correlated with aberrant spatiotemporal gait kinematics in the patients with MS. These results suggest that inhibitory GABA circuits may be altered in patients with MS, which impacts somatosensory gating and contributes to the motor performance deficits seen in these patients. NEW & NOTEWORTHY We aimed to determine whether somatosensory gating in patients with multiple sclerosis (MS) differed compared with healthy controls and whether a relationship exists between somatosensory gating and walking performance. We found reduced somatosensory gating responses in patients with MS, and these altered somatosensory gating res...
Source: Journal of Neurophysiology - Category: Neurology Authors: Tags: Research Articles Source Type: research