Potential of CLSM in studying some modern and fossil palynological objects

Summary We have tested possibilities and limitations of confocal laser scanning microscopy to study the morphology of pollen and spores and inner structure of sporoderms. As test objects, we used pollen grains of the modern angiosperm Ribes niveum (Grossulariaceae) and Datura metel (Solanaceae), fossil angiosperm pollen grains of Pseudointegricorpus clarireticulatum and Wodehouseia spinata dated to the Late Cretaceous, fossil gymnosperm pollen grains of Cycadopites‐type dated to the Middle Jurassic, and fossil megaspores Maexisporites rugulaeferus, M. grosstriletus, and Trileites sp. dated to the Early Triassic. For comparative purpose, we studied the same objects with application of conventional light, scanning electron (to entire pollen grains and spores or to semithin sections of their walls), or transmission electron microscopy. The resolution of confocal microscope is much lower than that of electron microscopes, as are its abilities to reconstruct the surface patterns and inner structure. On the other hand, it can provide information that is unreachable by other microscopical methods. Thus, the structure of endoapertures in angiosperm pollen grains can be directly observed. It is also helpful in studies of asymmetrical pollen and pollen grains bearing various appendages and having complicated exine structure, because rotation of 3‐D reconstructions allows one to examine all sides and structures of the pollen grain. The exact location of all visible and concealed str...
Source: Journal of Microscopy - Category: Laboratory Medicine Authors: Tags: Original Article Source Type: research