Mikl ós Bodanszky Award Lecture: Advances in the selective targeting of protein phosphatase‐1 and phosphatase‐2A with peptides

Protein phosphatase‐1 and phosphatase‐2A are two ubiquitously expressed enzymes known to catalyze the majority of dephosphorylation reactions on serine and threonine inside cells. They play roles in most cellular processes and are tightly regulated by regulatory subunits in holoenzymes. Their misregulation and malfunction contribute to disease development and progression, such as in cancer, diabetes, viral infections, and neurological as well as heart diseases. Therefore, targeting these phosphatases for therapeutic use would be highly desirable; however, their complex regulation and high conservation of the active site have been major hurdles for selectively targeting them in the past. In the last decade, new approaches have been developed to overcome these hurdles and have strongly revived the field. I will focus here on peptide‐based approaches, which contributed to showing that these phosphatases can be targeted selectively and aided in rethinking the design of selective phosphatase modulators. Finally, I will give a perspective on www.depod.org, the human dephosphorylation database, and how it can aid phosphatase modulator design. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. Addressing long‐standing challenges, new peptidic tools have emerged for the selective modulation of PP1 and PP2A activity, including activators, inhibitors, and a database useful for their design. These new peptide‐ba...
Source: Journal of Peptide Science - Category: Biochemistry Authors: Tags: Review Source Type: research