Macrophage 11{beta}-HSD-1 deficiency promotes inflammatory angiogenesis

11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) predominantly converts inert glucocorticoids into active forms, thereby contributing to intracellular glucocorticoid levels. 11β-HSD1 is dynamically regulated during inflammation, including in macrophages where it regulates phagocytic capacity. The resolution of inflammation in some disease models including inflammatory arthritis is impaired by 11β-HSD1 deficiency or inhibition. However, 11β-HSD1 deficiency/inhibition also promotes angiogenesis, which is beneficial in mouse models of surgical wound healing, myocardial infarction or obesity. The cell types responsible for the anti-inflammatory and anti-angiogenic roles of 11β-HSD1 have not been characterised. Here, we generated Hsd11b1MKO mice with LysM-Cre mediated deletion of Hsd11b1 to investigate whether 11β-HSD1 deficiency in myeloid phagocytes is pro-angiogenic and/or affects the resolution of inflammation. Resolution of inflammatory K/BxN-induced arthritis was impaired in Hsd11b1MKO mice to a similar extent as in mice globally deficient in 11β-HSD1. This was associated with >2-fold elevation in levels of the endothelial marker Cdh5 mRNA, suggesting increased angiogenesis in joints of Hsd11b1MKO mice following arthritis. A pro-angiogenic phenotype was confirmed by measuring angiogenesis in subcutaneously implanted polyurethane sponges, in which Hsd11b1MKO mice showed 20% greater vessel density than their littermate controls, associat...
Source: Journal of Endocrinology - Category: Endocrinology Authors: Tags: Research Source Type: research