Variations on a theme: species differences in synaptic connectivity do not predict central pattern generator activity

In this study we examined Si1 homologs in two additional nudibranchs: Flabellina iodinea, which evolved LR swimming independently of Melibe and Dendronotus, and Tritonia diomedea, which swims with dorsal-ventral (DV) body flexions. In Flabellina, the contralateral Si1s exhibit alternating rhythmic bursting activity during the SMP and are members of the swim central pattern generator (CPG), as in Melibe. The Si1 homologs in Tritonia do not burst rhythmically during the DV SMP but are inhibited and receive bilaterally synchronous synaptic input. In both Flabellina and Tritonia, the Si1 homologs exhibit reciprocal inhibition, as in Melibe. However, in Flabellina the inhibition is polysynaptic, whereas in Tritonia it is monosynaptic, as in Melibe. In all species, the contralateral Si1s are electrically coupled. These results suggest that Flabellina and Melibe convergently evolved a swim CPG that contains Si1; however, they differ in monosynaptic connections. Connectivity is more similar between Tritonia and Melibe, which exhibit different swimming behaviors. Thus connectivity between homologous neurons varies independently of both behavior and phylogeny. NEW & NOTEWORTHY This research shows that the synaptic connectivity between homologous neurons exhibits species-specific variations on a basic theme. The neurons vary in the extent of electrical coupling and reciprocal inhibition. They also exhibit different patterns of activity during rhythmic motor behaviors that are not pr...
Source: Journal of Neurophysiology - Category: Neurology Authors: Tags: Research Articles Source Type: research