Ten days of repeated local forearm heating does not affect cutaneous vascular function

The aim of the present study was to determine whether 10 days of repeated local heating could induce peripheral adaptations in the cutaneous vasculature and to investigate potential mechanisms of adaptation. We also assessed maximal forearm blood flow to determine whether repeated local heating affects maximal dilator capacity. Before and after 10 days of heat training consisting of 1-h exposures of the forearm to 42°C water or 32°C water (control) in the contralateral arm (randomized and counterbalanced), we assessed hyperemia to rapid local heating of the skin (n = 14 recreationally active young subjects). In addition, sequential doses of acetylcholine (ACh, 1 and 10 mM) were infused in a subset of subjects (n = 7) via microdialysis to study potential nonthermal microvascular adaptations following 10 days of repeated forearm heat training. Skin blood flow was assessed using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC) was calculated as laser-Doppler red blood cell flux divided by mean arterial pressure. Maximal cutaneous vasodilation was achieved by heating the arm in a water-spray device for 45 min and assessed using venous occlusion plethysmography. Forearm vascular conductance (FVC) was calculated as forearm blood flow divided by mean arterial pressure. Repeated forearm heating did not increase plateau percent maximal CVC (CVCmax) responses to local heating (89 ± 3 vs. 89 ± 2% CVCmax, P = 0.19), 1 mM ACh (43 ± 9 vs. 53 &p...
Source: Journal of Applied Physiology - Category: Physiology Authors: Tags: RESEARCH ARTICLE Source Type: research