Circuit feedback increases activity level of a circuit input through interactions with intrinsic properties

Central pattern generator (CPG) motor circuits underlying rhythmic behaviors provide feedback to the projection neuron inputs that drive these circuits. This feedback elicits projection neuron bursting linked to CPG rhythms. The brief periodic interruptions in projection neuron activity in turn influence CPG output, gate sensory input, and enable coordination of multiple target CPGs. However, despite the importance of the projection neuron activity level for circuit output, it remains unknown whether feedback also regulates projection neuron intraburst firing rates. I addressed this issue using identified neurons in the stomatogastric nervous system of the crab, Cancer borealis, a small motor system controlling chewing and filtering of food. Mechanosensory input triggers long-lasting activation of two projection neurons to elicit a chewing rhythm, during which their activity is patterned by circuit feedback. Here I show that feedback increases the intraburst firing rate of only one of the two projection neurons (commissural projection neuron 2: CPN2). Furthermore, this is not a fixed property because the CPN2 intraburst firing rate is decreased instead of increased by feedback when a chewing rhythm is activated by a different modulatory input. I establish that a feedback pathway that does not impact the CPN2 activity level in the control state inhibits CPN2 sufficiently to trigger postinhibitory rebound following mechanosensory stimulation. The rebound increases the CPN2 intr...
Source: Journal of Neurophysiology - Category: Neurology Authors: Tags: Research Articles Source Type: research