Nuclear complex of glyceraldehyde-3-phosphate dehydrogenase and DNA repair enzyme apurinic/apyrimidinic endonuclease I protect smooth muscle cells against oxidant-induced cell death [Research]

Atherosclerotic plaque destabilization is the major determinant of most acute coronary events. Smooth muscle cell (SMC) death contributes to plaque destabilization. Here, we describe a novel antiapoptotic mechanism in vascular SMCs that involves interaction of nuclear glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with apurinic/apyrimidinic endonuclease 1 (Ape1), the major oxidized DNA repair enzyme. GAPDH down-regulation potentiated H2O2-induced DNA damage and SMC apoptosis. Conversely, GAPDH overexpression decreased DNA damage and protected SMCs against apoptosis. Ape1 down-regulation reversed the resistance of GAPDH-overexpressing cells to DNA damage and apoptosis, which indicated that Ape1 is indispensable for GAPDH-dependent protective effects. GAPDH bound Ape1 in the SMC nucleus, and blocking (or oxidation) of GAPDH active site cysteines suppressed GAPDH/Ape1 interaction and potentiated apoptosis. GAPDH up-regulated Ape1 via a transcription factor homeobox protein Hox-A5–dependent mechanism. GAPDH levels were reduced in atherosclerotic plaque SMCs, and this effect correlated with oxidative stress and SMC apoptosis. Thus, we demonstrated that nuclear GAPDH/Ape1 interaction preserved Ape1 activity, reduced DNA damage, and prevented SMC apoptosis. Suppression of SMC apoptosis by maintenance of nuclear GAPDH/Ape1 interactions may be a novel therapy to increase atherosclerotic plaque stability.—Hou, X., Snarski, P., Higashi, Y., Yoshida, T., Jurkevich, A., Dela...
Source: FASEB Journal - Category: Biology Authors: Tags: Research Source Type: research