Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide [Research]

We report our findings that NC1 domain derived from collagen α3(IV) chain—a major structural component of the BM—was capable of inducing BTB remodeling, making the BTB leaky in studies in vivo. Furthermore, NC1 domain peptide was transported across the epithelium via a microtubule-dependent mechanism and is capable of inducing apical ES degeneration, which leads to germ cell exfoliation from the seminiferous epithelium. Of more importance, we show that NC1 domain peptide exerted its regulatory effect by disorganizing actin microfilaments and microtubules in Sertoli cells so that they failed to support cell adhesion and transport of germ cells and organelles (e.g., residual bodies, phagosomes) across the seminiferous epithelium. This local regulatory axis between the BM, BTB, and the apical ES thus coordinates cellular events that take place across the seminiferous epithelium during the epithelial cycle of spermatogenesis.—Chen, H., Mruk, D. D., Lee, W. M., Cheng, C. Y. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane–derived noncollagenous 1 domain peptide.
Source: FASEB Journal - Category: Biology Authors: Tags: Research Source Type: research
More News: Study