Multi ‐gene phylogenetic analysis reveals that shochu‐fermenting Saccharomyces cerevisiae strains form a distinct sub‐clade of the Japanese sake cluster

In this study, we performed the first (to our knowledge) phylogenetic classification of shochu strains based on nucleotide gene sequences. We performed phylogenetic classification of 21 putative indigenous shochu yeast strains isolated from 11 distilleries. All of these strains were shown or confirmed to be Saccharomyces cerevisiae, sharing species identification with 34 known S. cerevisiae strains (including commonly used shochu, sake, ale, whisky, bakery, bioethanol, and laboratory yeast strains and clinical isolate) that were tested in parallel. Our analysis used five genes that reflect genome‐level phylogeny for the strain‐level classification. In a first step, we demonstrated that partial regions of the ZAP1, THI7, PXL1, YRR1, and GLG1 genes were sufficient to reproduce previous sub‐species classifications. In a second step, these five analyzed regions from each of 25 strains (four commonly used shochu strains and the 21 putative indigenous shochu strains) were concatenated and used to generate a phylogenetic tree. Further analysis revealed that the putative indigenous shochu yeast strains form a monophyletic group that includes both the shochu yeasts and a subset of the sake group strains; this cluster is a sister group to other sake yeast strains, together comprising a sake‐shochu group. Differences among shochu strains were small, suggesting that it may be possible to correlate subtle phenotypic differences among shochu flavors with specific differences in gen...
Source: Yeast - Category: Molecular Biology Authors: Tags: Research Article Source Type: research