Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD

Patients with chronic obstructive pulmonary disease (COPD) experience a delayed recovery from skeletal muscle fatigue following exhaustive exercise that likely contributes to their progressive loss of mobility. As this phenomenon is not well understood, this study sought to examine postexercise peripheral oxygen (O2) transport and muscle metabolism dynamics in patients with COPD, two important determinants of muscle recovery. Twenty-four subjects, 12 nonhypoxemic patients with COPD and 12 healthy subjects with a sedentary lifestyle, performed dynamic plantar flexion exercise at 40% of the maximal work rate (WRmax) with phosphorus magnetic resonance spectroscopy (31P-MRS), near-infrared spectroscopy (NIRS), and vascular Doppler ultrasound assessments. The mean response time of limb blood flow at the offset of exercise was significantly prolonged in patients with COPD (controls: 56 ± 27 s; COPD: 120 ± 87 s; P < 0.05). In contrast, the postexercise time constant for capillary blood flow was not significantly different between groups (controls: 49 ± 23 s; COPD: 51 ± 21 s; P > 0.05). The initial postexercise convective O2 delivery (controls: 0.15 ± 0.06 l/min; COPD: 0.15 ± 0.06 l/min) and the corresponding oxidative adenosine triphosphate (ATP) demand (controls: 14 ± 6 mM/min; COPD: 14 ± 6 mM/min) in the calf were not significantly different between controls and patients with COPD (P > 0.05). The phosphocreatine resy...
Source: AJP: Endocrinology and Metabolism - Category: Endocrinology Authors: Tags: Research Article Source Type: research