Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses

In this study, we present the in vitro antifungal activity of silver nanoparticles (AgNPs) synthesized from acidophilic actinobacterium Pilimelia columellifera subsp. pallida SL19 strain, alone and in combination with antibiotics viz., amphotericin B, fluconazole, and ketoconazole against pathogenic fungi, namely Candida albicans, Malassezia furfur, and Trichophyton erinacei. The minimum inhibitory concentration (MIC) and minimum biocidal concentration (MBC) of AgNPs against test fungi were evaluated. The fractional inhibitory concentration (FIC) index was determined to estimate antifungal activity of AgNPs combined with antibiotics. Antifungal activity of AgNPs varied among the tested fungal strains. M. furfur was found to be most sensitive to biogenic silver nanoparticles, followed by C. albicans and T. erinacei. The lowest MIC of AgNPs was noticed against M. furfur (16 μg ml−1). Synergistic effect was observed on C. albicans when AgNP were combined with amphotericin B and ketoconazole and on M. furfur with fluconazole and ketoconazole (FIC index of 0.5). Cytotoxic effect of AgNPs on HeLa and 3T3 cell lines was evaluated. The IC50 values were found to be 55 and 25 μg ml−1, respectively. The present study indicates that silver nanoparticles from P. columellifera subsp. pallida SL19 strain have antifungal activity, both alone and in combination with antibiotics, and offer a valuable contribution to nanomedicine.
Source: Journal of Basic Microbiology - Category: Microbiology Authors: Tags: RESEARCH PAPER Source Type: research