Development and long-term integration of MGE-lineage cortical interneurons in the heterochronic environment

Interneuron precursors transplanted into visual cortex induce network plasticity during their heterochronic maturation. Such plasticity can have a significant impact on the function of the animal and is normally present only during a brief critical period in early postnatal development. Elucidating the synaptic and physiological properties of interneuron precursors as they mature is key to understanding how long-term circuit changes are induced by transplants. We studied the development of transplant-derived interneurons and compared it to endogenously developing interneurons (those that are born and develop in the same animal) at parallel developmental time points, using patch-clamp recordings in acute cortical slices. We found that transplant-derived interneurons develop into fast-spiking and non-fast-spiking neurons characteristic of the medial ganglionic eminence (MGE) lineage. Transplant-derived interneurons matured more rapidly than endogenously developing interneurons, as shown by more hyperpolarized membrane potentials, smaller input resistances, and narrower action potentials at a juvenile age. In addition, transplant-derived fast-spiking interneurons have more quickly saturating input-output relationships and lower maximal firing rates in adulthood, indicating a possible divergence in function. Transplant-derived interneurons both form inhibitory synapses onto host excitatory neurons and receive excitatory synapses from host pyramidal cells. Unitary connection prope...
Source: Journal of Neurophysiology - Category: Neurology Authors: Tags: Rapid Reports Source Type: research