Evidence of involvement of neurone ‐glia/neurone‐neurone communications via gap junctions in synchronised activity of KNDy neurones

Pulsatile secretion of gonadotrophin‐releasing hormone (GnRH)/luteinising hormone is indispensable for the onset of puberty and reproductive activities at adulthood in mammalian species. A cohort of neurones expressing three neuropeptides, namely kisspeptin, encoded by the Kiss1 gene, neurokinin B (NKB) and dynorphin A, localised in the hypothalamic arcuate nucleus (ARC), so‐called KNDy neurones, comprises a putative intrinsic source of the GnRH pulse generator. Synchronous activity among KNDy neurones is considered to be required for pulsatile GnRH secretion. It has been reported that gap junctions play a key role in synchronising electrical activity in the central nervous system. Thus, we hypothesised that gap junctions are involved in the synchronised activities of KNDy neurones, which is induced by NKB‐NK3R signalling. We determined the role of NKB‐NK3R signalling in Ca2+ oscillation (an indicator of neuronal activities) of KNDy neurones and its synchronisation mechanism among KNDy neurones. Senktide, a selective agonist for NK3R, increased the frequency of Ca2+ oscillations in cultured Kiss1‐GFP cells collected from the mediobasal hypothalamus of the foetal Kiss1‐green fluorescent protein (GFP) mice. The senktide‐induced Ca2+ oscillations were synchronised in the Kiss1‐GFP and neighbouring glial cells. Confocal microscopy analysis of these cells, which have shown synchronised Ca2+ oscillations, revealed close contacts between Kiss1‐GFP cells, as well as...
Source: Journal of Neuroendocrinology - Category: Endocrinology Authors: Tags: ORIGINAL ARTICLE Source Type: research