Regulation of DNA damage tolerance in mammalian cells by post-translational modifications of PCNA

Publication date: Available online 21 June 2017 Source:Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis Author(s): Rie Kanao, Chikahide Masutani DNA damage tolerance pathways, which include translesion DNA synthesis (TLS) and template switching, are crucial for prevention of DNA replication arrest and maintenance of genomic stability. However, these pathways utilize error-prone DNA polymerases or template exchange between sister DNA strands, and consequently have the potential to induce mutations or chromosomal rearrangements. Post-translational modifications of proliferating cell nuclear antigen (PCNA) play important roles in controlling these pathways. For example, TLS is mediated by mono-ubiquitination of PCNA at lysine 164, for which RAD6–RAD18 is the primary E2–E3 complex. Elaborate protein–protein interactions between mono-ubiquitinated PCNA and Y-family DNA polymerases constitute the core of the TLS regulatory system, and enhancers of PCNA mono-ubiquitination and de-ubiquitinating enzymes finely regulate TLS and suppress TLS-mediated mutagenesis. The template switching pathway is promoted by K63-linked poly-ubiquitination of PCNA at lysine 164. Poly-ubiquitination is achieved by a coupled reaction mediated by two sets of E2–E3 complexes, RAD6–RAD18 and MMS2–UBC13–HTLF/SHPRH. In addition to these mono- and poly-ubiquitinations, simultaneous mono-ubiquitinations on multiple units of the PCNA homotrimeric ring promote an unidentified...
Source: Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis - Category: Cytology Source Type: research
More News: Cytology