Revealing the reaction mechanisms of Li –O2 batteries using environmental transmission electron microscopy

Nature Nanotechnology 12, 535 (2017). doi:10.1038/nnano.2017.27 Authors: Langli Luo, Bin Liu, Shidong Song, Wu Xu, Ji-Guang Zhang & Chongmin Wang The performances of a Li–O2 battery depend on a complex interplay between the reaction mechanism at the cathode, the chemical structure and the morphology of the reaction products, and their spatial and temporal evolution; all parameters that, in turn, are dependent on the choice of the electrolyte. In an aprotic cell, for example, the discharge product, Li2O2, forms through a combination of solution and surface chemistries that results in the formation of a baffling toroidal morphology. In a solid electrolyte, neither the reaction mechanism at the cathode nor the nature of the reaction product is known. Here we report the full-cycle reaction pathway for Li–O2 batteries and show how this correlates with the morphology of the reaction products. Using aberration-corrected environmental transmission electron microscopy (TEM) under an oxygen environment, we image the product morphology evolution on a carbon nanotube (CNT) cathode of a working solid-state Li–O2 nanobattery and correlate these features with the electrochemical reaction at the electrode. We find that the oxygen-reduction reaction (ORR) on CNTs initially produces LiO2, which subsequently disproportionates into Li2O2 and O2. The release of O2 creates a hollow nanostructure with Li2O outer-shell and Li2O2 inner-shell surfaces. Our findings show that, in gene...
Source: Nature Nanotechnology - Category: Nanotechnology Authors: Tags: Letter Source Type: research