Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF-{beta}

In this report, we explore the role of focal adhesion kinase (FAK) signaling in determining the fate of lung epithelial cells in response to transforming growth factor-β1 (TGF-β1). Rat type II alveolar epithelial cells (RLE-6TN) were treated with or without TGF-β1, and the expressions of mesenchymal markers, phenotype, and function were analyzed. Pharmacological protein kinase inhibitors were utilized to screen for SMAD-dependent and -independent pathways. SMAD and FAK signaling was analyzed using siRNA knockdown, inhibitors, and expression of a mutant construct of FAK. Apoptosis was measured using cleaved caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. TGF-β1 induced the acquisition of mesenchymal markers, including α-smooth muscle actin, in RLE-6TN cells and enhanced the contraction of three-dimensional collagen gels. This phenotypical transition or plasticity, epithelial-myofibroblast plasticity (EMP), is dependent on SMAD3 and FAK signaling. FAK activation was found to be dependent on ALK5/SMAD3 signaling. We observed that TGF-β1 induces both EMP and apoptosis in the same cell culture system but not in the same cell. While blockade of SMAD signaling inhibited EMP, it had a minimal effect on apoptosis; in contrast, inhibition of FAK signaling markedly shifted to an apoptotic fate. The data support that FAK activation determines whether AECs undergo EMP vs. apoptosis in response to TGF-β1 stimu...
Source: AJP: Lung Cellular and Molecular Physiology - Category: Respiratory Medicine Authors: Tags: RESEARCH ARTICLE Source Type: research