Dynamic coupling between TRPV4 and Ca2+-activated SK1/3 and IK1 K+ channels plays a critical role in regulating the K+-secretory BK channel in kidney collecting duct cells

The large-conductance Ca2+-activated K+ channel, BK (KCNMA1), is expressed along the connecting tubule (CNT) and cortical collecting duct (CCD) where it underlies flow- and Ca2+-dependent K+ secretion. Its activity is partially under the control of the mechanosensitive transient receptor potential vanilloid type 4 (TRPV4) Ca2+-permeable channel. Recently, we identified three small-/intermediate-conductance Ca2+-activated K+ channels, SK1 (KCNN1), SK3 (KCNN3), and IK1 (KCNN4), with notably high Ca2+-binding affinities, that are expressed in CNT/CCD and may be regulated by TRPV4-mediated Ca2+ influx. The K+-secreting CCD mCCDcl1 cells, which express these channels, were used to determine whether SK1/3 and IK1 are activated on TRPV4 stimulation and whether they contribute to Ca2+ influx and activation of BK. Activation of TRPV4 (GSK1016790A) modestly depolarized the membrane potential and robustly increased intracellular Ca2+, [Ca2+]i. Inhibition of both SK1/3 and IK1 by application of apamin and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), respectively, further depolarized the membrane potential and markedly suppressed the TRPV4-mediated rise in [Ca2+]i. Application of BK inhibitor iberiotoxin after activation of TRPV4 without apamin/TRAM-34 also reduced [Ca2+]i and further intensified membrane depolarization, demonstrating BK involvement. However, the BK-dependent effects on [Ca2+]i and membrane potential were largely abolished by pretreatment with apamin and TRAM...
Source: AJP: Renal Physiology - Category: Urology & Nephrology Authors: Tags: RAPID REPORT Source Type: research